

Ryohi Ono, M.D. Ph.D.¹; Kieran Docherty, MBChB Ph.D.¹; Alasdair D. Henderson, Ph.D.¹; Brian L. Claggett, Ph.D.²; Akshay S. Desai, M.D. MPH²; Carolyn S.P. Lam, M.D. Ph.D.³; Bertram Pitt, M.D.⁴; Michele Senni, M.D.⁵; Sanjiv J. Shah, M.D.⁶; Morten Schou, M.D. Ph.D.⁷; Adriana A. Voors, M.D.⁸; Flaviana Amarante, M.D.⁹; James Lay-Flurrie, MSc¹⁰; Andrea Glasauer, Ph.D.¹¹; Faiez Zannad, M.D.¹²; Muthiah Vaduganathan, M.D. MPH²; Pardeep S. Jhund, MBChB MSc Ph.D.¹; Scott D. Solomon, M.D.²; John J.V. McMurray, M.D.¹

1. British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK. 2. Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. 3. National Heart Centre Singapore & Duke-National University of Singapore, Singapore. 4. University of Michigan, School of Medicine, Ann Arbor, MI, USA. 5. University of Milano-Bicocca, Papa Giovanni XXIII Hospital, Bergamo, Italy. 6. Northwestern University Feinberg School of Medicine, Chicago, IL, USA. 7. Department of Cardiology, Herlev-Gentofte University Hospital, Hellerup, Denmark. 8. University of Groningen, Groningen, the Netherlands. 9. Cardiology and Nephrology Clinical Development, Bayer SA, São Paulo, Brazil. 10. Bayer plc, Research & Development, Pharmaceuticals, Reading, UK. 11. Bayer AG, Global Medical Affairs, Berlin, Germany. 12. Université de Lorraine, Inserm Clinical Investigation Centre, CHU, Nancy, France.

Background

Identifying heart failure (HF) with preserved ejection fraction (HFpEF) can be challenging, and several probability-based scores have been proposed to assist diagnosis. Among them, the H₂FPEF and HFA-PEFF scores require echocardiographic assessment, whereas the **HFpEF-ABA score** is solely based on **age, body mass index (BMI), and a history of atrial fibrillation (AF)** (another version includes NT-proBNP).

$$\text{Log Odds} = -7.788751 + 0.062564 \times \text{Age (years)} + 0.135149 \times \text{BMI (kg/m}^2\text{)} + 2.040806 \times \text{AF (Yes-1, No-0)}$$

$$\text{HFpEF-ABA score (probability of HFpEF) (\%)} = \frac{\text{Odds}}{1 + \text{Odds}}$$

Recently, it has also been suggested that the HFpEF-ABA score has prognostic utility in HFpEF. Therefore, we investigated the HFpEF-ABA score among participants in the FINEARTS-HF trial, including the range of scores, its association with outcomes, and the effect of treatment with finerenone according to HFpEF-ABA score.

Methods

FINEARTS-HF investigated the efficacy and safety of finerenone compared with placebo in patients with HF and left ventricular ejection fraction (LVEF) $\geq 40\%$.

Baseline HFpEF-ABA score was calculated for each patient, and scores were categorized into three groups: **<75%, 75–90%, and >90%**. The prognostic value of the score and the effect of finerenone were examined by score category and also using the score as a continuous variable.

Primary outcome

- Composite of total HF events and cardiovascular death

Secondary outcome

- Total HF events, cardiovascular death, first HF event or cardiovascular death, first HF hospitalization or cardiovascular death, and all-cause death.

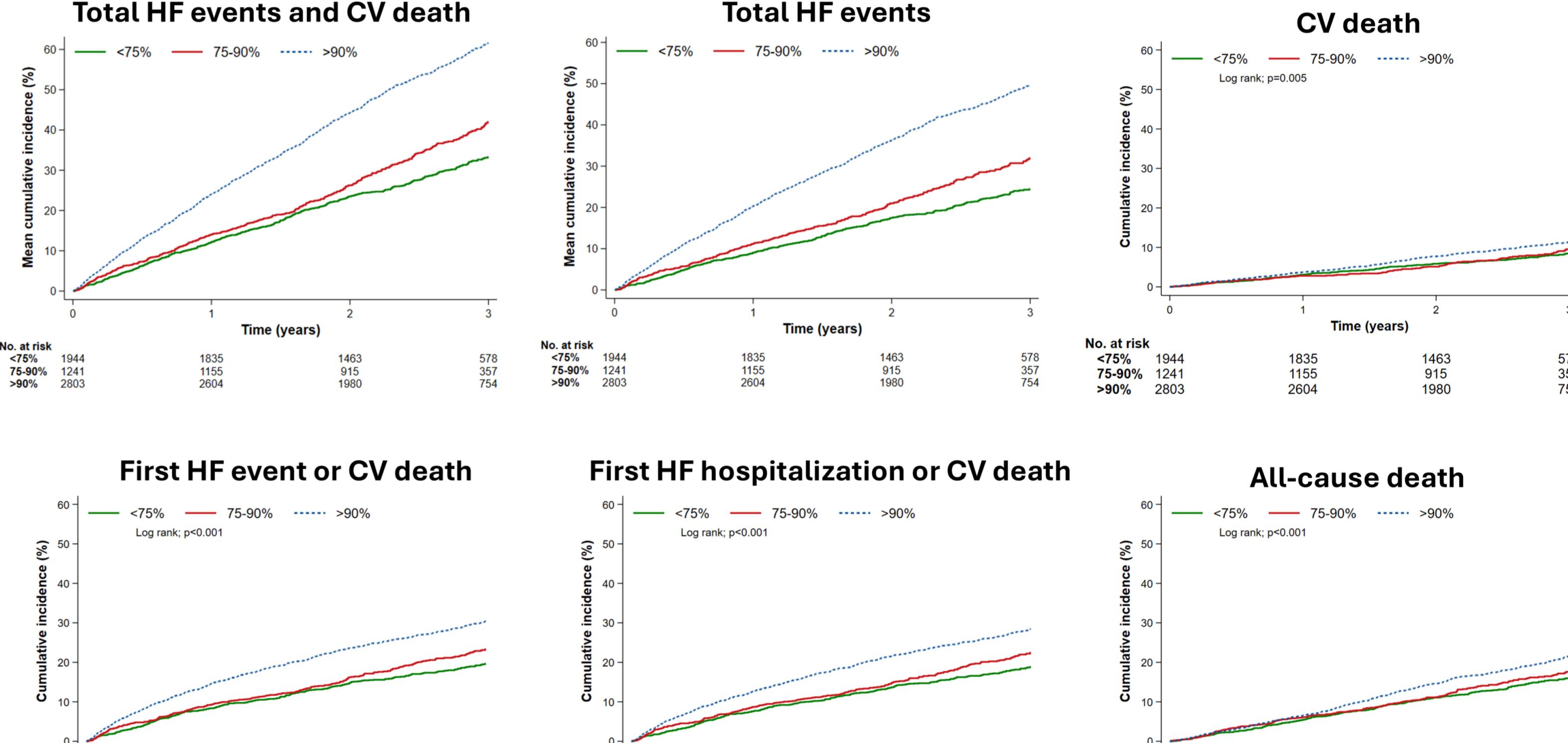
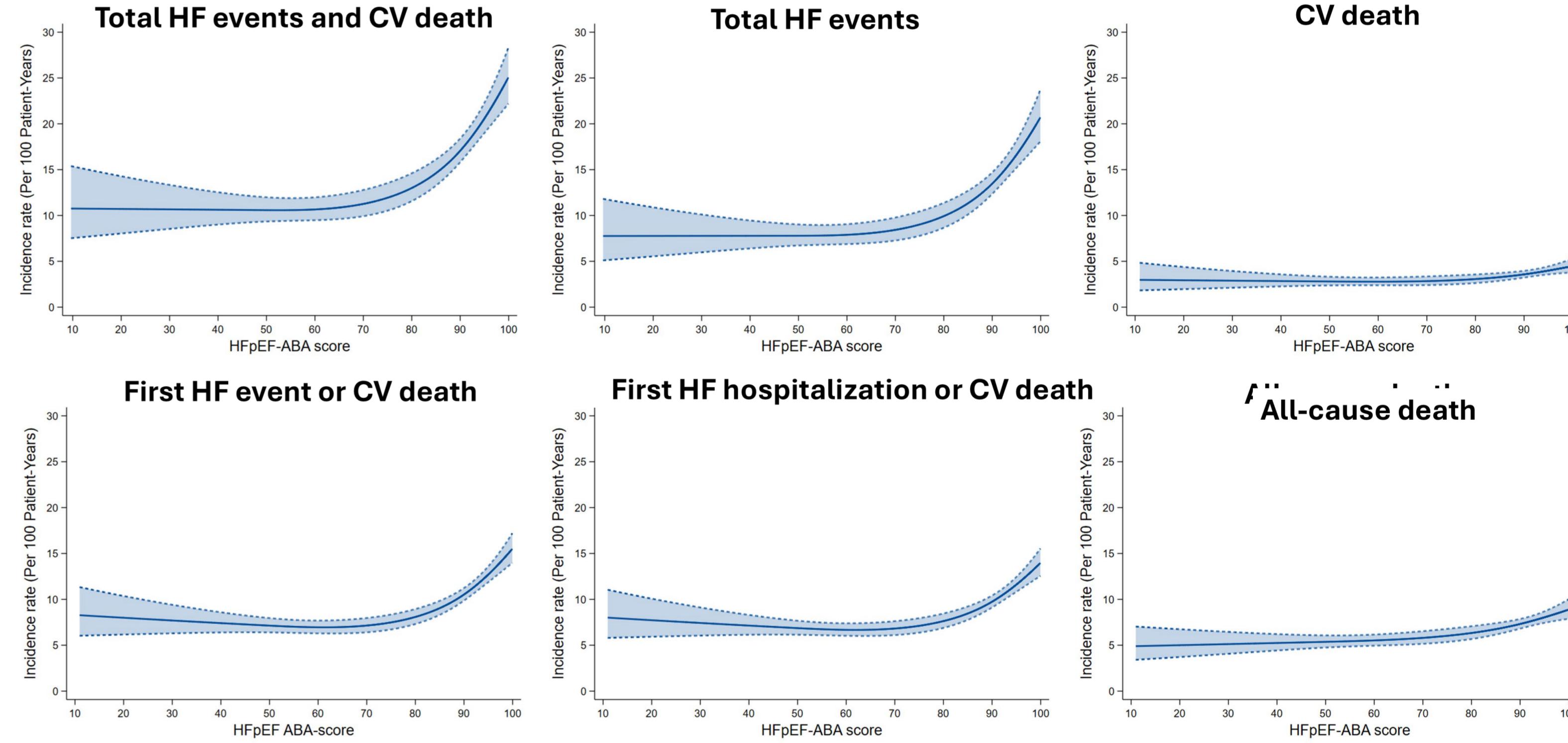

Results

Table 1. Baseline characteristics according to baseline HFpEF-ABA


	Score <75% N = 1,944	Score 75–90% N = 1,241	Score >90% N = 2,803	P for trend
Age (years)	67.1 \pm 10.3	71.5 \pm 8.6	75.6 \pm 7.9	<0.001
Male, n (%)	1,191 (61.3)	671 (54.1)	1,399 (49.9)	<0.001
BMI (kg/m ²)	27.3 \pm 4.5	29.8 \pm 6.5	31.8 \pm 6.2	<0.001
NYHA class III/IV	441 (22.7)	384 (30.9)	1,026 (36.6)	<0.001
KCCQ-TSS	72.4 \pm 22.8	67.1 \pm 23.9	63.3 \pm 24.0	<0.001
LVEF (%)	51.5 \pm 8.1	52.9 \pm 7.9	53.2 \pm 7.5	<0.001
LVEF $\geq 50\%$	1,051 (54.1)	807 (65.1)	1,952 (69.8)	<0.001
NT-proBNP (pg/ml)	559 (285–1,239)	921 (399–1,859)	1,412 (827–2,380)	<0.001
eGFR (ml/min/1.73m ²)	68.7 \pm 20.7	62.7 \pm 19.0	57.3 \pm 18.0	<0.001
Hypertension, n (%)	1,674 (86.1)	1,074 (86.5)	2,566 (91.5)	<0.001
AF or atrial flutter, n (%)	56 (2.9)	584 (47.1)	2,670 (95.3)	<0.001
ACE inhibitor, n (%)	740 (38.1)	449 (36.2)	958 (34.2)	0.006
ARB, n (%)	892 (45.9)	524 (42.2)	1,195 (42.6)	0.034
ARNI, n (%)	255 (13.1)	95 (7.7)	163 (5.8)	<0.001
Beta-blocker, n (%)	1,625 (83.6)	1,057 (85.2)	2,405 (85.8)	0.039
SGLT2 inhibitor, n (%)	274 (14.1)	165 (13.3)	374 (13.3)	0.48
Loop diuretic, n (%)	1,588 (81.7)	1,096 (88.3)	2,542 (90.7)	<0.001

Abbreviations: ACE inhibitor, Angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin inhibitor; BMI, body mass index; eGFR, estimated glomerular filtration rate; HFpEF, heart failure with preserved ejection fraction; KCCQ-TSS, Kansas City Cardiomyopathy Questionnaire-Total symptom score; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type natriuretic peptide; New York Heart Association; and SGLT2, sodium-glucose cotransporter 2.

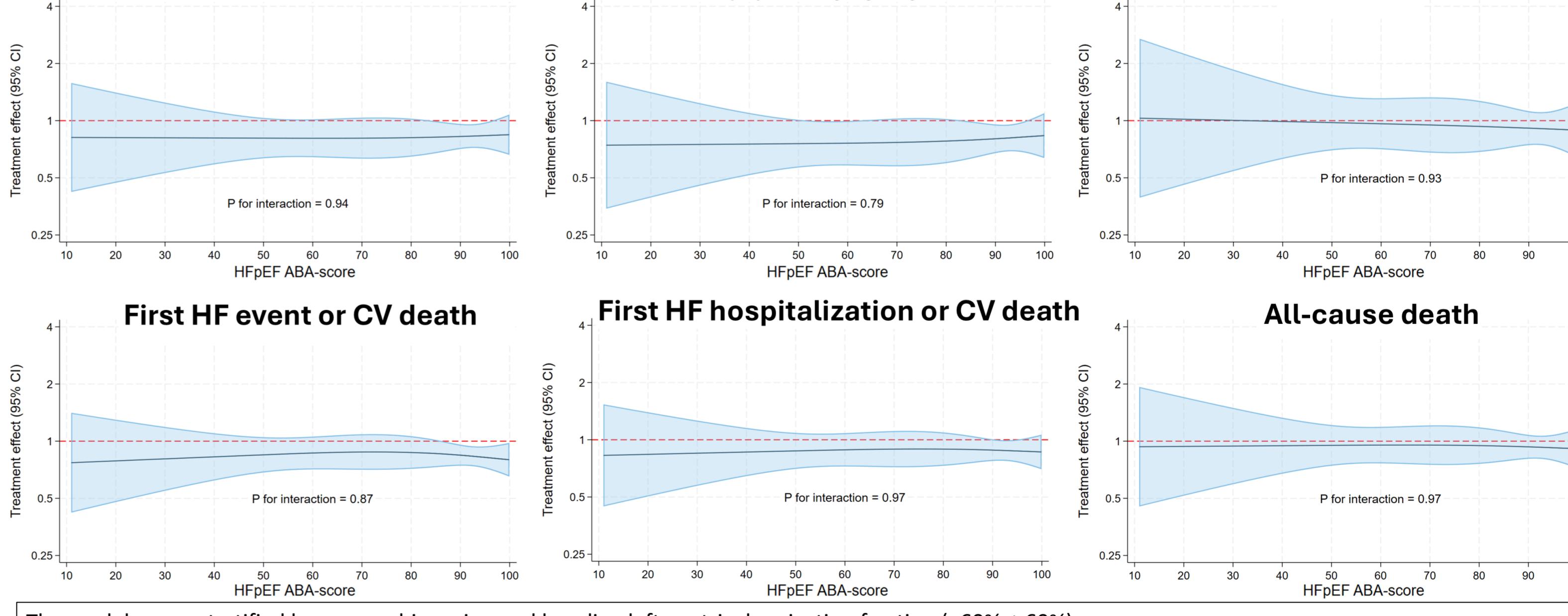

Figure 1. Cumulative incidence of clinical outcomes in FINEARTS-HF according to HFpEF-ABA score (analyzed as a categorical variable)

Figure 2. Incidence rates of clinical outcomes in FINEARTS-HF according to HFpEF-ABA score (analyzed as a continuous variable)

Figure 3. Effect of finerenone on outcomes in FINEARTS-HF according to baseline HFpEF-ABA score (analyzed as a continuous variable)

Table 2. Risk of Clinical Outcomes According to Baseline HFpEF-ABA Score

HFpEF-ABA score	<75% N = 1,944	75–90% N = 1,241	>90% N = 2,803
Total HF events and cardiovascular death			
Event rate (95% CI)	11.1 (9.8–12.6)	13.6 (11.8–15.6)	21.1 (19.3–23.0)
RR (95% CI)*	Reference	1.21 (1.00–1.47)	1.90 (1.63–2.22)
RR (95% CI)**	Reference	1.02 (0.84–1.24)	1.23 (1.03–1.47)
Total HF events			
Event rate (95% CI)	8.2 (7.0–9.5)	10.5 (9.0–12.4)	17.1 (15.5–18.8)
RR (95% CI)*	Reference	1.26 (1.01–1.57)	2.04 (1.70–2.45)
RR (95% CI)**	Reference	1.06 (0.85–1.33)	1.32 (1.07–1.63)
Cardiovascular death			
Event rate (95% CI)	2.9 (2.5–3.4)	3.0 (2.5–3.7)	4.1 (3.6–4.6)
RR (95% CI)*	Reference	1.08 (0.83–1.41)	1.51 (1.22–1.87)
RR (95% CI)**	Reference	0.91 (0.69–1.19)	0.97 (0.77–1.23)
First HF event or cardiovascular death			
Event rate (95% CI)	7.4 (6.6–8.2)	8.7 (7.7–9.9)	12.9 (12.0–13.8)
RR (95% CI)*	Reference	1.17 (0.99–1.39)	1.75 (1.53–2.01)
RR (95% CI)**	Reference	0.97 (0.82–1.15)	1.16 (1.00–1.34)
First HF hospitalization or cardiovascular death			
Event rate (95% CI)	7.0 (6.3–7.8)	8.3 (7.3–9.4)	11.7 (10.9–12.6)
RR (95% CI)*	Reference	1.18 (0.99–1.40)	1.70 (1.48–1.96)
RR (95% CI)**	Reference	0.97 (0.81–1.15)	1.11 (0.96–1.29)
All-cause death			
Event rate (95% CI)	5.8 (5.1–6.5)	6.3 (5.5–7.2)	8.1 (7.4–8.8)
RR (95% CI)*	Reference	1.09 (0.91–1.32)	1.42 (1.22–1.65)
RR (95% CI)**	Reference	0.91 (0.75–1.11)	0.88 (0.75–1.04)

*Stratified by/adjusted for geographic region, baseline LVEF (<60%, $\geq 60\%$), and treatment assignment.

**Further adjusted for sex, heart rate, systolic blood pressure, prior hospitalization for HF, NYHA functional class III/IV, left ventricular ejection fraction, estimated glomerular filtration rate, NT-proBNP (log-transformed), myocardial infarction, and diabetes mellitus.

Abbreviations: CI, confidence interval; HF, heart failure; HR, hazard ratio; and RR, rate ratio.

Conclusion

Despite a convincing clinical diagnosis of HFmrEF/HFpEF, approximately 1 in 3 participants in FINEARTS-HF had a HFpEF-ABA score indicating a probability of HFmrEF/HFpEF <75% (and 1 in 5, a score indicating a probability $\leq 60\%$), suggesting low sensitivity in this population. Patients with higher HFpEF-ABA scores had worse clinical outcomes, but notably so only if the probability score was >90%. However, finerenone significantly reduced events across the range of HFpEF-ABA scores in FINEARTS-HF. These data suggest that the HFpEF-ABA score may lead to misclassification of patients who benefit from disease-modifying therapy.